當(dāng)折射率變化時,光線就會發(fā)生散射。這就意味著在液體中,汽泡對光線的散射作用和固體粒子是一樣的。米氏理論描述了粒子對光的散射作用。
光的散射情況會隨著粒子尺寸的變化而變化。在
粒子計數(shù)器中,米氏理論zui重要的結(jié)果以及它對光散射的預(yù)測都與之相關(guān)。當(dāng)粒子尺寸比光的波長要小得多的時候,光散射主要是朝著正前方。而當(dāng)粒子尺寸比光波長要大得多的時候,光散射則主要朝直角和后方方向散射。
光可以看做是沿著傳播方向進(jìn)行垂直振蕩的波。這一振蕩方向就是所謂的偏振。入射光的偏振非常重要。在以前的例子里,光的散射是在入射光的偏振平面內(nèi)進(jìn)行測量的。
粒子尺寸在5μm時的散射情況類似;而具有偏振現(xiàn)象,粒子尺寸在0.3μm時的散射情況有很大不同。由于用對數(shù)表示,變化不到十倍的,都看不到散射光的強(qiáng)度隨著頻率的改變而變化:較短的波長意味較強(qiáng)的散射。在其他條件都相同的情況下,藍(lán)光的散射強(qiáng)度大約是紅光的10倍。大部分粒子計數(shù)器采用的都是近紅外或紅色激光;直到zui近,這還都是zui符合經(jīng)濟(jì)效益的選擇。藍(lán)色氣體和半導(dǎo)體激光器價格都很貴;而且半導(dǎo)體激光器的使用壽命也很短。
空氣粒子計數(shù)器
在傳感器的出口處有一個真空裝置,把空氣經(jīng)過傳感器抽走。而空氣中的粒子則將激光散射。散射光又會被后面的聚光鏡聚焦到光學(xué)探測器上,隨后把光轉(zhuǎn)換成電壓信號,并且進(jìn)行放大和濾波。此后,這個信號從模擬的轉(zhuǎn)換成數(shù)字信號,并且由微處理器對它進(jìn)行分類。微處理器會通過接口將計數(shù)器連接到控制數(shù)據(jù)收集系統(tǒng)上。
激光粒子計數(shù)器
氣體激光器發(fā)明于1960年,而半導(dǎo)體激光器發(fā)明于1962年。開始時這些激光器很貴,但是隨著它們變成具有經(jīng)濟(jì)效益時,在粒子計數(shù)器中,就用氣體激光取代了白光。而到了20世紀(jì)80年代末,在絕大多數(shù)場合下,更便宜的半導(dǎo)體激光器又取代了氣體激光器。
用于粒子計數(shù)的激光器有兩種:一種是氣體激光器,如氦氖(HeNe)激光器和氬離子(arg-ion)激光器;另外就是半導(dǎo)體激光器。氣體激光器能夠生產(chǎn)強(qiáng)烈的單色光,有時甚至是偏振光。氣體激光器產(chǎn)生準(zhǔn)直高斯光束,而半導(dǎo)體激光器則產(chǎn)生出一個小的發(fā)散點光源,通常發(fā)散光有兩個不同的軸,并且總是出現(xiàn)多種模式。由于發(fā)散光具有多軸性,半導(dǎo)體激光器通常都有一個橢圓形的輸出,這帶來了一定的挑戰(zhàn),也帶來了一定的優(yōu)勢。不同軸的散射光意味著要么勉強(qiáng)接受這一橢圓形的輸出,要么設(shè)計一套復(fù)雜而昂貴的光學(xué)鏡來做補(bǔ)償。另一方面,橢圓光束很適合用于某些應(yīng)用,利用長軸,可以得到更好的覆蓋范圍。
總之,氦氖激光器的輸出“直接可用,無需增加任何光學(xué)元件。要想產(chǎn)生類似于氦氖激光器的光束,從半導(dǎo)體激光器出來的光必須經(jīng)過透鏡聚焦,這會導(dǎo)致光能的損耗。但是,半導(dǎo)體激光器的成本低、體積小、工作電壓低、功耗小,成為粒子計數(shù)器的*選擇。
在要求高靈敏度的應(yīng)用中,氦氖激光器可以用于開式腔模式,產(chǎn)生很大的功率。因為樣本要通過光學(xué)空腔諧振器,當(dāng)粒子濃度較高時,激光會中斷(無法維持“Q因子),所以此時這種類型的激光不適用。